Assessment of phylogenomic and orthology approaches for phylogenetic inference
نویسندگان
چکیده
MOTIVATION Phylogenomics integrates the vast amount of phylogenetic information contained in complete genome sequences, and is rapidly becoming the standard for reliably inferring species phylogenies. There are, however, fundamental differences between the ways in which phylogenomic approaches like gene content, superalignment, superdistance and supertree integrate the phylogenetic information from separate orthologous groups. Furthermore, they all depend on the method by which the orthologous groups are initially determined. Here, we systematically compare these four phylogenomic approaches, in parallel with three approaches for large-scale orthology determination: pairwise orthology, cluster orthology and tree-based orthology. RESULTS Including various phylogenetic methods, we apply a total of 54 fully automated phylogenomic procedures to the fungi, the eukaryotic clade with the largest number of sequenced genomes, for which we retrieved a golden standard phylogeny from the literature. Phylogenomic trees based on gene content show, relative to the other methods, a bias in the tree topology that parallels convergence in lifestyle among the species compared, indicating convergence in gene content. CONCLUSIONS Complete genomes are no guarantee for good or even consistent phylogenies. However, the large amounts of data in genomes enable us to carefully select the data most suitable for phylogenomic inference. In terms of performance, the superalignment approach, combined with restrictive orthology, is the most successful in recovering a fungal phylogeny that agrees with current taxonomic views, and allows us to obtain a high-resolution phylogeny. We provide solid support for what has grown to be a common practice in phylogenomics during its advance in recent years. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains.
Many of the eukaryotic phylogenomic analyses published to date were based on alignments of hundreds to thousands of genes. Frequently, in such analyses, the most realistic evolutionary models currently available are often used to minimize the impact of systematic error. However, controversy remains over whether or not idiosyncratic gene family dynamics (i.e., gene duplications and losses) and i...
متن کاملOrthology Inference in Nonmodel Organisms Using Transcriptomes and Low-Coverage Genomes: Improving Accuracy and Matrix Occupancy for Phylogenomics
Orthology inference is central to phylogenomic analyses. Phylogenomic data sets commonly include transcriptomes and low-coverage genomes that are incomplete and contain errors and isoforms. These properties can severely violate the underlying assumptions of orthology inference with existing heuristics. We present a procedure that uses phylogenies for both homology and orthology assignment. The ...
متن کاملConceptual framework and pilot study to benchmark phylogenomic databases based on reference gene trees
Phylogenomic databases provide orthology predictions for species with fully sequenced genomes. Although the goal seems well-defined, the content of these databases differs greatly. Seven ortholog databases (Ensembl Compara, eggNOG, HOGENOM, InParanoid, OMA, OrthoDB, Panther) were compared on the basis of reference trees. For three well-conserved protein families, we observed a generally high sp...
متن کاملEditorial: Orthology and applications
The accurate inference of orthologous genes underpins almost all biological studies that consider more than a single genome. Indeed, orthology formalizes the intuitive notion of corresponding genes in different species. As such, orthology finds applications in a broad range of research areas, such as functional genomics, comparative genomics, phylogenetics or pharmacology. Accordingly, well ove...
متن کاملInferring orthology and paralogy.
The distinction between orthologs and paralogs, genes that started diverging by speciation versus duplication, is relevant in a wide range of contexts, most notably phylogenetic tree inference and protein function annotation. In this chapter, we provide an overview of the methods used to infer orthology and paralogy. We survey both graph-based approaches (and their various grouping strategies) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 23 7 شماره
صفحات -
تاریخ انتشار 2007